4.1 Application in Mechanics and dy/dx as a Rate Measure

4.1.1 Velocity and Acceleration in Rectilinear Motion

The velocity of a moving particle is defined as the rate of change of its displacement with respect to time and the acceleration is defined as the rate of change to time.

ect

Let a particle *A* moves rectilinearly as shown in figure.

Let *s* be the displacement from a fixed point *O* along the path at time *t*; *s* is considered to be positive on right of the point O and negative on the left of it.

Also, Δs is positive when s increases *i.e.*, when the particle moves towards right.

Thus, if Δs be the increment in s in time Δt . The **average velocity** in this interval is $\frac{\Delta s}{\Delta t}$

And the instantaneous velocity *i.e.*, velocity at time t is $v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$

If the velocity varies, then there is change of velocity Δv in time Δt .

Hence, the acceleration at time $t = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$

The distance travelled *s* (in metre) by a particle in *t* second is given by $s = t^3 + 2t^2 + t$. The speed of the Example: 1 particle after 1 sec. will be (d) None of these

(a) 8 cm/sec. (b) 6 cm/sec. (c) 2 cm/sec

 $s = t^{3} + 2t^{2} + t$, $v = \frac{ds}{dt} = 3t^{2} + 4t + 1$ **Solution:** (a)

Speed of the particle after 1 second

$$v_{(t=1)} = \left(\frac{ds}{dt}\right)_{(t=1)} = 3 \times 1^2 + 4 \times 1 + 1 = 8 cm / sec.$$

A particle moves in a straight line in such a way that its velocity at any point is given by $v^2 = 2 - 3x$, Example: 2 where *x* is measured from a fixed point. The acceleration is

(a) Zero (b) Uniform (c) Non-uniform (d) Indeterminate

Solution: (b) Velocity, $v^2 = 2 - 3x$

Differentiating with respect to *t*, we get

 $2v\frac{dv}{dt} = -3.\frac{dx}{dt} \Rightarrow 2v\frac{dv}{dt} = -3v \Rightarrow \frac{dv}{dt} = -\frac{3}{2}$

Get More Learning Materials Here :

ition of a point in time 't' is given by $x = a + bt - ct^2$, $y = at + bt^2$. Its acceleration at time 't' is [MP PET 2 Hence, acceleration is uniform.

(b)
$$(b+c)$$
 (c) $2b-2c$ (d) $2y^2+c^2$

Solution: (d) Acceleration in x-direction = $\frac{d^2x}{dt^2} = -2c$ and acceleration in y-direction = $\frac{d^2y}{dt^2} = 2b$

Resultant acceleration is = $\sqrt{(-2c)^2 + (2b)^2} = 2\sqrt{b^2 + c^2}$

Example: 4 If the path of a moving point is the curve x = at $y = b \sin at$, then its acceleration at any instant [SCRA 1996] (a) Is constant (b) Varies as the distance from the axis of x

(d) Varies as the of the point from the origin

4.9

(c) Varies as the distance from the axis of *y*

Solution: (c)
$$\frac{dx}{dt} = v_x = a \implies \frac{d^2x}{dt^2} = 0 = a_x$$

 a_x is acceleration in *x*-axis

$$\frac{d^2y}{dt^2} = -ba^2 \sin at \implies a_y = -a^2y$$

Hence, a_y changes as *y* changes.

Example: 5 A stone thrown vertically upwards from the surface of the moon at velocity of 24 *m/sec*. reaches a height of $s = 24t - 0.8t^2m$ after *t sec*. The acceleration due to gravity in *m/sec*² at the surface of the moon is [MP PET 1992]

Solution: (b) $\frac{ds}{dt}$ = velocity = 24 = 24 - 1.6 *t*

So acceleration at *t*, is $\left[\frac{d^2s}{dt^2}\right] = -1.6$

As stone is thrown upwards, so acceleration due to gravity (which acts downwards) = 1.6.

4.1.2 Derivative as the Rate of Change

If a variable quantity *y* is some function of time *t i.e.*, y = f(t), then small change in time Δt have a corresponding change Δy in *y*.

Thus, the average rate of change = $\frac{\Delta y}{\Delta t}$

When limit $\Delta t \rightarrow 0$ is applied, the rate of change becomes instantaneous and we get the rate of change with respect to *t*.

i.e.,
$$\lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} = \frac{dy}{dt}$$

Hence, it is clear that the rate of change of any variable with respect to some other variable is derivative of first variable with respect to other variable.

Note: \Box The differential coefficient of y with respect to x i.e, $\frac{dy}{dx}$ is nothing but the rate of

increase of *y* relative to *x*.

Example: 6 The rate of change of the surface area of a sphere of radius *r* when the radius is increasing at the rate of 2cm/sec is proportional to

(c) r

CLICK HERE

(b) $\frac{l}{2}$

(a)
$$\frac{l}{r}$$

Get More Learning Materials Here : 📕

(d) r^2

$$\frac{ds}{dt} = 4\pi \times 2r \frac{dr}{dt} = 8\pi \times 2 = 16\pi \implies \frac{ds}{dt} \propto r.$$

(b) 22

(b) 0.8 *m*/sec.

r

Example: 7 If the volume of a spherical balloon is increasing at the rate of $900 \text{ } cm^2/sec$. then the rate of change of radius of balloon at instant when radius is 15 cm [in cm/sec]

(a)
$$\frac{22}{7}$$

đt

(c) $\frac{7}{22}$

(d) None of these

Solution: (c) $V = \frac{4}{3}\pi r^{3}$

.:. —

Differentiate with respect to t

 $\frac{dV}{dt} = \frac{4}{3}\pi 3r^2 \cdot \frac{dr}{dt} \Rightarrow \frac{dr}{dt} \Rightarrow \frac{1}{4\pi r^2} \cdot \frac{dV}{dt}$ $\frac{dr}{dt} = \frac{1}{4 \times \pi \times 15 \times 15} \times 900 \quad = \frac{1}{\pi} = \frac{7}{22} \,.$

- **Example: 8** A man of height 1.8 *m* is moving away from a lamp post at the rate of 1.2 *m/sec*. If the height of the lamp post be 4.5 *meter*, then the rate at which the shadow of the man is lengthening
- **Solution:** (b) $\frac{dy}{dt} = 1.2$ According to the figure,

(a) 0.4 *m*/sec

$$x = \frac{2}{3}y$$

$$\Rightarrow \frac{dx}{dt} = \frac{2}{3} \cdot \frac{dy}{dt}$$

$$\Rightarrow \text{ Rate of length of shadow } \frac{dx}{dt} = 0.8 \text{ m/s}.$$

Example: 9 A 10 *cm* long rod *AB* moves with its ends on two mutually perpendicular straight lines *OX* and *OY*. If the end *A* be moving at the rate of 2 *cm/sec*. then when the distance of *A* from *O* is 8 *cm*, the rate at which the end *B* is moving, is [SCRA 1996]

CLICK HERE

≫

🕀 www.studentbro.in

Application in Mechanics

Basic Level

1.	The displacement of a particle in time t is given by $s = 2t^2 - 3t + 1$. The acceleration is									
	(a) 1	(b) 3	(c) 4	(d) 5						
2.	A stone is falling freely an	d describes a distance s in t	seconds given by equation	$s = \frac{1}{2}gt^2$. The acceleration of						
	the stone is									
	(a) Uniform	(b) Zero	(c) Non-uniform	(d) Indeterminate						
3.	The velocity of a particle a	at time t is given by the relat	tion $v = 6t - \frac{t^2}{6}$. The distance	travelled in 3 seconds is, if						
	s=0 at $t=0$	s=0 at $t=0$								
	(a) $\frac{39}{2}$	(b) $\frac{57}{2}$	(c) $\frac{51}{2}$	(d) $\frac{33}{2}$						
4.	The equation of motion of a car is $s = t^2 - 2t$, where <i>t</i> is measured in <i>hours</i> and <i>s</i> in <i>kilometers</i> . when the distance travelled by the car is 15 <i>km</i> , the velocity of the car is									
	(a) 2 <i>km</i> / <i>h</i>	(b) 4 <i>km</i> / <i>h</i>	(c) 6km/h	(d) 8km/h						
5۰	A particle is moving in a st	raight line according as $s = 45$	$t + 11t^2 - t^3$, then the time with	hen it will come to rest, is						
	(a) – 9 seconds	(b) $\frac{5}{3}$ seconds	(c) 9 seconds	(d) $-\frac{5}{3}$ seconds						
6.	If $t = \frac{v^2}{2}$, then $\left(-\frac{df}{dt}\right)$ is equ	al to (where <i>f</i> is acceleration)	[MP PET 1991]						
	(a) f^2	(b) f^3	(c) $-f^3$	(d) $-f^2$						
7.	A particle is moving in a s be measured in <i>seconds</i> the	traight line according to the en the average velocity of the	formula $s = t^2 + 8t + 12$. If $s = particle in third second is$	be measured in <i>meters</i> and <i>t</i>						
	(a) 14 <i>m/sec</i>	(b) 13 <i>m/sec</i>	(c) 15 <i>m/sec</i>	(d) None of these						
8.	If $2t = v^2$, then dv/dt is equ	al to								
	(a) 0	(b) $\frac{1}{4}$	(c) $\frac{1}{2}$	(d) $\frac{1}{v}$						
9.	The equation of motion of are <i>cm</i> and <i>sec</i> . The acceler	a particle moving along a str ration of the particle will be z	raight line is $s = 2t^3 - 9t^2 + 12$ ero after	t, where the units of s and t						

》

Get More Learning Materials Here :

Regional www.studentbro.in

	(a) $\frac{3}{2}$ sec	(b) $\frac{2}{3}$ sec	(c) $\frac{1}{2}$ sec	(d) Never									
10.	A body moves according t will be (v in cm/sec)	A body moves according to the formula $v = 1 + t^2$, where v is the velocity at time t. The acceleration after 3 sec will be (v in cm/sec)											
	(a) 24 <i>cm/sec</i> ²	(b) 12 cm/sec ²	(c) 6 cm/sec ²	[MP PET 1988] (d) None of these									
11.	A particle moves in a stra	aight line so that its velocity	v at any point is given by	$v^2 = a + bx$, where $a, b \neq 0$ are									
	(a) Zero	(b) Uniform	(c) Non-uniform	(d) Indeterminate									
12.	The distance in seconds, described by a particle in t seconds is given by $s = ae^{t} + \frac{b}{e^{t}}$. The acceleration of the												
	particle at time <i>t</i> is												
	(a) Proportional to <i>t</i>	(b) Proportional to s	(c) <i>s</i>	(d) Constant									
13.	A stone thrown vertically upwards rises 's' metre in t seconds, where $s = 80t - 16t^2$, then velocity after 2 seconds is [SCRA 1996]												
	(a) 8 <i>m per sec</i> .	(b) 16 <i>m per sec</i> .	(c) 32 <i>m per sec</i> .	(d) 64 <i>m per sec.</i>									
14.	If the distance 's' travelled by a particle in time t is $s = a \sin t + b \cos 2t$, then the acceleration at $t = 0$ is												
	(a) <i>a</i>	(b) <i>– a</i>	(c) 4 <i>b</i>	(d) - 4 <i>b</i>									
15.	If the distance travelled by	y a point in time <i>t</i> is $s = 180 t - $	$16t^2$, then the rate of change	e in velocity is									
	(a) – 16 <i>t unit</i>	(b) 48 <i>unit</i>	(c) – 32 <i>unit</i>	(d) None of these									
16.	The motion of stone thrown up vertically is given by $s = 13.8t - 4.9t^2$, where <i>s</i> is in <i>metres</i> and <i>t</i> is in seconds. Then its velocity at $t = 1$ second is												
	(a) 3 <i>m/s</i>	(b) 5 <i>m/s</i>	(c) 4 <i>m/s</i>	(d) None of these									
17.	A particle is moving in a	straight line. Its displacemen	t at time t is given by $s = -$	$4t^2 + 2t$, then its velocity and									
	acceleration at time $t = \frac{1}{2}$ second are												
	(a) -2, -8	(b) 2, 6	(c) -2, 8	(d) 2, 8									
18.	A ball thrown vertically upwards falls back on the ground after 6 <i>seconds</i> . Assuming that the equation of motion is of the form $s = ut - 4.9t^2$, where <i>s</i> is in <i>metres</i> and <i>t</i> is in seconds, find the velocity at $t = 0$												
	(a) 0 <i>m/s</i>	(b) 1 <i>m/s</i>	(c) 29.4 <i>m/s</i>	(d) None of these									
19.	A particle is moving in a straight line according as $s = \sqrt{1+t}$, then the relation between its acceleration (a) and velocity (v) is												
	(a) $a \propto v^2$	(b) $a \propto v^3$	(c) $a \propto \frac{1}{v^3}$	(d) $a \propto v$									
20.	The distance travelled by particle is	a particle moving in a strai	ght line in time <i>t</i> is $s = \sqrt{at}$	$\frac{1}{2} + bt + c$. Acceleration of the									
				[Kerala (Engg.) 2002]									
	(a) Proportional to <i>t</i>	(b) Proportional to <i>s</i>	(c) Proportional to s^{-3}	(d) None of these									
		Advance	Level										
21.	A particle is moving along	the curve $x = at^2 + bt + c$. If ac	$=b^2$, then the particle would	d be moving with uniform[Orissa J]									
	(a) Rotation	(b) Velocity	(c) Acceleration	(d) Retardation									

Get More Learning Materials Here : 🗾

28. 29. 30. 31.	(a) 2.7 The volume of a spl change of the surface (a) $\frac{5}{2}$ sq cm/min. A ladder 5 m in lengt from the wall at the is 4.0 m away from t (a) 2 m/sec If the rate of increase the rate of increase of (a) As the square of	 (b)27 herical balloon is increasing e of the balloon at the instant (b) 5 sq cm/min. ch is resting against vertical w rate of 1.5 m/sec. The length he wall decreases at the rate (b) 3 m/sec se of area of a circle is not coof area varies the perimeter(b) 	 (c) 27 at the rate of 40 cubic certs when its radius is 8 centime (c) 10 sq cm/min. wall. The bottom of the ladded of the highest point of the l of (c) 2.5 m/sec onstant but the rate of incree Inversely as the period 	 (d) None of these ntimetre per minute. The rate of etres, is (d) 20 sq cm/min. er is pulled along the ground away ladder when the foot of the ladder (d) 1.5 m/sec ase of perimeter is constant, then meter (c) As the radius (d) 							
28. 29. 30. 31.	(a) 2.7 The volume of a splichange of the surface (a) $\frac{5}{2}$ sq cm/min. A ladder 5 m in lengt from the wall at the is 4.0 m away from t (a) 2 m/sec If the rate of increase	 (b)27 herical balloon is increasing e of the balloon at the instant (b) 5 sq cm/min. ch is resting against vertical wrate of 1.5 m/sec. The length he wall decreases at the rate (b) 3 m/sec se of area of a circle is not coof area varies 	 (c) 27 at the rate of 40 cubic certs when its radius is 8 centime (c) 10 sq cm/min. wall. The bottom of the ladded of the highest point of the l of (c) 2.5 m/sec onstant but the rate of incres 	 (d) None of these ntimetre per minute. The rate of etres, is (d) 20 sq cm/min. er is pulled along the ground away adder when the foot of the ladder (d) 1.5 m/sec ase of perimeter is constant, then 							
28. 29. 30.	(a) 2.7 The volume of a splichange of the surface (a) $\frac{5}{2}$ sq cm/min. A ladder 5 m in lengt from the wall at the is 4.0 m away from t (a) 2 m/sec If the rate of increase	 (b)27 herical balloon is increasing e of the balloon at the instant (b) 5 sq cm/min. th is resting against vertical wrate of 1.5 m/sec. The length he wall decreases at the rate (b) 3 m/sec 	 (c) 27 at the rate of 40 cubic cells when its radius is 8 centime (c) 10 sq cm/min. wall. The bottom of the ladded of the highest point of the l of (c) 2.5 m/sec onstant but the rate of increments 	 (d) None of these ntimetre per minute. The rate of etres, is (d) 20 sq cm/min. er is pulled along the ground away adder when the foot of the ladder (d) 1.5 m/sec 							
28. 29. 30.	(a) 2.7 The volume of a spl change of the surface (a) $\frac{5}{2}$ sq cm/min. A ladder 5 m in lengt from the wall at the is 4.0 m away from t	 (b)27 herical balloon is increasing e of the balloon at the instant (b) 5 sq cm/min. ch is resting against vertical wrate of 1.5 m/sec. The length he wall decreases at the rate 	 (c) 27 at the rate of 40 cubic certs when its radius is 8 centime (c) 10 sq cm/min. wall. The bottom of the ladder of the highest point of the l 	 (d) None of these ntimetre per minute. The rate of etres, is (d) 20 sq cm/min. er is pulled along the ground away adder when the foot of the ladder 							
28. 29.	(a) 2.7 The volume of a spl change of the surface (a) $\frac{5}{2}$ sq cm/min.	(b)27 herical balloon is increasing e of the balloon at the instant (b) 5 <i>sq cm/min</i> .	 (c) 27 at the rate of 40 cubic certified when its radius is 8 centime (c) 10 sq cm/min. 	(d) None of thesentimetre per minute. The rate of etres, is(d) 20 sq cm/min.							
28. 29.	(a) 2.7 The volume of a spl change of the surface	(b) – .27 herical balloon is increasing e of the balloon at the instant	(c) 27 at the rate of 40 cubic ce when its radius is 8 centime	(d) None of these ntimetre per minute. The rate of etres, is							
28.	(a) 2.7(b)27(c) 27(d) None of theseThe volume of a spherical balloon is increasing at the rate of 40 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 8 centimetres, is										
	If $y = x^3 + 5$ and x changes from 3 to 2.99, then the approximate change in y is										
	(a) $\frac{8}{3}$ cm/sec	(b) $\frac{4}{3}$ cm/sec	(c) $\frac{2}{9}$ <i>cm/sec</i>	(d) None of these							
27.	A 10 cm long rod AB moves with its ends on two mutually perpendicular straight lines OX and OY. If the end be moving at the rate of 2 cm/sec, then when the distance of A from O is 8 cm, the rate at which the end B moving , is [SCRA 1996]										
	(a) $\pi cm^2/s$	(b) $2\pi cm^2 / s$	(c) $10\pi cm^2/s$	(d) None of these							
26.	Radius of a circle is a cm, will be	increasing uniformly at the r	ate of 3 <i>cm/sec</i> . The rate of i	increase of area when radius is 10							
<u> </u>		Pa	sis Laug	Kute Meusures							
				Rate Measures							
5	and sec. If the stone (a) 18.9 cm/sec	reaches at maximum height in (b) 12.6 <i>cm/sec</i>	n 3sec. then $u =$ (c) 37.8 cm/sec	(d) None of these							
25.	The equation of mot	ion of a stone, thrown vertica	ally upwards is $s = ut - 6.3t^2$,	where the units of <i>s</i> and <i>t</i> are <i>cm</i>							
- 1	velocity is	(h) o	(c) 15	[MP PET 1992]							
24.	A point moves in a	4 straight line during the time	2 e $t=0$ to $t=3$ according to	the law $s = 15t - 2t^2$. The average							
	(a) $-1m/\sec^2$	(b) $\frac{5}{4}m/\sec^2$	(c) $-\frac{1}{2}m/\sec^2$	(d) $-\frac{5}{4}m/\sec^2$							
23.	nction of time <i>t</i> (in <i>seconds</i>) given <i>seconds</i> at a distance of 16 <i>metres</i>										
~~	(a) <i>h</i> /3	(b) 2h	(c) h	(d) o							
	stone is maximum, tl	he height of the become become									

32. Gas is being pumped into a spherical balloon at the rate of $30 ft^3/min$. Then the rate at which the radius increases when its reaches the value 15 ft is

CLICK HERE

》

Get More Learning Materials Here : 💻

(a)
$$\frac{1}{30\pi} ft / \min$$
. (b) $\frac{1}{15\pi} ft / \min$. (c) $\frac{1}{20} ft / \min$. (d) $\frac{1}{25} ft / \min$.

33. On dropping a stone in stationary water circular ripples are observed. Rate of flow of ripples is 6 *cm*/sec. When radius of the circle is 10 *cm*, then fluid rate of increase in its area is (a) $120\pi cm/sec$ (b) 120 sqcm/sec (c) $\pi sqcm/sec$ (d) $120\pi sqcm/sec$

34. If the edge of a cube increases at the rate of 60 *cm per second,* at what rate the volume is increasing when the edge is 90 *cm*

(a) 486000 *cu cm per sec* (b) 1458000 *cu cm per sec* (c) 43740000 *cu cm per sec* (d) None of these If a spherical balloon has a variable diameter $3x + \frac{9}{2}$, then the rate of change of its volume with respect to x is

(a)
$$27 \pi (2x+3)^2$$
 (b) $\frac{27\pi}{16} (2x+3)^2$ (c) $\frac{27\pi}{8} (2x+3)^2$ (d) None of these

36. Two cyclists start from the junction of two perpendicular roads, their velocities being 3v metres/minute and 4v metres/minute. The rate at which the two cyclists are separating is

(a)
$$\frac{1}{2} vm/min$$
 (b) $5 vm/min$ (c) vm/min (d) None of these

37. A stick of length *a cm* rests against a vertical wall and the horizontal floor. If the foot of the stick slides with a constant velocity of *b cm/s* then the magnitude of the velocity of the middle point of the stick when it is equally inclined with the floor and the wall, is

(a)
$$\frac{b}{\sqrt{2}}cm/s$$
 (b) $\frac{b}{2}cm/s$ (c) $\frac{ab}{2}cm/s$ (d) None of these

38. If $y = \int_0^x \frac{t^2}{\sqrt{t^2 + 1}} dt$ then the rate of change of y with respect to x when x = 1, is (a) $\sqrt{2}$ (b) 1/2 (c) $1/\sqrt{2}$ (d) Not

(d) None of these

35.

Answer Sheet

	Assignment (Basic and Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	а	с	d	с	b	b	d	a	с	b	с	b	d	с	с	a	с	b	с
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38		
с	d	b	b	с	d	а	b	С	a	с	a	d	b	С	b	a	С		

Get More Learning Materials Here : 💻

